Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 12(591)2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337739

RESUMO

Transforming growth factor-ß (TGF-ß) superfamily members are critical signals in tissue homeostasis and pathogenesis. Melanoma grows in the epidermis and invades the dermis before metastasizing. This disease progression is accompanied by increased sensitivity to microenvironmental TGF-ß. Here, we found that skin fat cells (adipocytes) promoted metastatic initiation by sensitizing melanoma cells to TGF-ß. Analysis of melanoma clinical samples revealed that adipocytes, usually located in the deeper hypodermis layer, were present in the upper dermis layer within proximity to in situ melanoma cells, an observation that correlated with disease aggressiveness. In a coculture system, adipocytes secreted the cytokines IL-6 and TNF-α, which induced a proliferative-to-invasive phenotypic switch in melanoma cells by repressing the expression of the microRNA miR-211. In a xenograft model, miR-211 exhibited a dual role in melanoma progression, promoting cell proliferation while inhibiting metastatic spread. Bioinformatics and molecular analyses indicated that miR-211 directly targeted and repressed the translation of TGFBR1 mRNA, which encodes the type I TGF-ß receptor. Hence, through this axis of cytokine-mediated repression of miR-211, adipocytes increased the abundance of the TGF-ß receptor in melanoma cells, thereby enhancing cellular responsiveness to TGF-ß ligands. The induction of TGF-ß signaling, in turn, resulted in a proliferative-to-invasive phenotypic switch in cultured melanoma cells. Pharmacological inhibition of TGF-ß prevented these effects. Our findings further reveal a molecular link between fat cells and metastatic progression in melanoma that might be therapeutically targeted in patients.


Assuntos
Adipócitos/citologia , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adipócitos/metabolismo , Animais , Proliferação de Células , Técnicas de Cocultura , Progressão da Doença , Humanos , Interleucina-6/metabolismo , Ligantes , Camundongos , Células NIH 3T3 , Metástase Neoplásica , Transplante de Neoplasias , Fenótipo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
2.
J Invest Dermatol ; 138(10): 2216-2223, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29679610

RESUMO

Melanoma, a melanocyte origin neoplasm, is the most lethal type of skin cancer, and incidence is increasing. Several familial and somatic mutations have been identified in the gene encoding the melanocyte lineage master regulator, MITF; however, the neoplastic mechanisms of these mutant MITF variants are mostly unknown. Here, by performing unbiased analysis of the transcriptomes in cells expressing mutant MITF, we identified calcium-binding protein S100A4 as a downstream target of MITF-E87R. By using wild-type and mutant MITF melanoma lines, we found that both endogenous wild-type and MITF-E87R variants occupy the S100A4 promoter. Remarkably, whereas wild-type MITF represses S100A4 expression, MITF-E87R activates its transcription. The opposite effects of wild-type and mutant MITF result in opposing cellular phenotypes, because MITF-E87R via S100A4 enhanced invasion and reduced adhesion in contrast to wild-type MITF activity. Finally, we found that melanoma patients with altered S100A4 expression have poor prognosis. These data show that a change in MITF transcriptional activity from repression to activation of S100A4 that results from a point mutation in MITF alters melanoma invasive ability. These data suggest new opportunities for diagnosis and treatment of metastatic melanoma.


Assuntos
DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Mutação , Proteína A4 de Ligação a Cálcio da Família S100/genética , Neoplasias Cutâneas/genética , Análise Mutacional de DNA , Progressão da Doença , Humanos , Immunoblotting , Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/biossíntese , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
3.
Nat Cell Biol ; 18(9): 1006-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27548915

RESUMO

Melanoma originates in the epidermis and becomes metastatic after invasion into the dermis. Prior interactions between melanoma cells and dermis are poorly studied. Here, we show that melanoma cells directly affect the formation of the dermal tumour niche by microRNA trafficking before invasion. Melanocytes, cells of melanoma origin, are specialized in releasing pigment vesicles, termed melanosomes. In melanoma in situ, we found melanosome markers in distal fibroblasts before melanoma invasion. The melanosomes carry microRNAs into primary fibroblasts triggering changes, including increased proliferation, migration and pro-inflammatory gene expression, all known features of cancer-associated fibroblasts (CAFs). Specifically, melanosomal microRNA-211 directly targets IGF2R and leads to MAPK signalling activation, which reciprocally encourages melanoma growth. Melanosome release inhibitor prevented CAF formation. Since the first interaction of melanoma cells with blood vessels occurs in the dermis, our data suggest an opportunity to block melanoma invasion by preventing the formation of the dermal tumour niche.


Assuntos
Movimento Celular/genética , Fibroblastos/metabolismo , Melanoma/genética , Melanossomas/genética , MicroRNAs/metabolismo , Animais , Transporte Biológico , Epiderme/metabolismo , Humanos , Melanócitos/metabolismo , Melanoma/metabolismo , Melanossomas/metabolismo , Camundongos , MicroRNAs/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
4.
Genome Res ; 26(5): 601-11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26907635

RESUMO

During development, enhancers play pivotal roles in regulating gene expression programs; however, their involvement in cancer progression has not been fully characterized. We performed an integrative analysis of DNA methylation, RNA-seq, and small RNA-seq profiles from thousands of patients, including 25 diverse primary malignances and seven body sites of metastatic melanoma. We found that enhancers are consistently the most differentially methylated regions (DMR) as cancer progresses from normal to primary tumors and then to metastases, compared to other genomic features. Remarkably, identification of enhancer DMRs (eDMRs) enabled classification of primary tumors according to physiological organ systems, and in metastasis eDMRs are the most correlated with patient outcome. To further understand the eDMR role in cancer progression, we developed a model to predict genes and microRNAs that are regulated by enhancer and not promotor methylation, which shows high accuracy with chromatin architecture methods and was experimentally validated. Interestingly, among all metastatic melanoma eDMRs, the most correlated with patient survival were eDMRs that "switched" their methylation patterns back and forth between normal, primary, and metastases and target cancer drivers, e.g., KIT We further demonstrated that eDMR target genes were modulated in melanoma by the bone metastasis microenvironment, suggesting that eDMRs respond to microenvironmental cues in metastatic niches. Our findings that aberrant methylation in cancer cells mostly affects enhancers, which contribute to tumor progression and cancer cell plasticity, will facilitate development of epigenetic anticancer approaches.


Assuntos
Metilação de DNA , DNA de Neoplasias , Elementos Facilitadores Genéticos , Melanoma , Linhagem Celular Tumoral , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidade
5.
Nat Commun ; 6: 6500, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25799239

RESUMO

Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Receptores Notch/metabolismo , Linhagem Celular , Córtex Cerebral/embriologia , Perfilação da Expressão Gênica , Humanos , Microscopia Confocal , Placa Neural/embriologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...